
 

LINE Encryption Overview 
Technical Whitepaper  
 

 
 

 
September 29 , 2016  

 

 
Version 1.0  

 
  



 

Copyright 
 

 

Copyright ©  2016 LINE  Corporation.  All Rights Reserved.  

 

This document is an intellectual property of LINE  Corp.; unauthorized reproduction or 

distribution of this document, or any portion of it is prohibited by law.  

This document is provided for information al  purpose s only. LINE Corp. has endeavored to verify 

the completeness and accuracy of information contained in this document, but it does not take 

the responsibility for possible errors or omissions in this document. Therefore, the responsibility 

for the usage of this document or the results of the usage falls entirely upon the user, and LINE 

Corp. does not make any explicit or implicit guarante e regarding this.  

Software products or merchandises mentioned in this document, including relevant URL 

information, conform to the copyright laws of their respective owners. The user is solely 

responsible for any results occurred by not complying with appl icable laws.  

LINE Corp. may modify the details of this document without prior notice.  
 
  



 

Document Information 
 

About This Document 

This document provides technical details about the encryption protocols and algorithms used 

in LINEÕs messaging and VoIP pl atform.  

Audience 

This document  is intended for security engineers and developers with a strong 

understanding of  encryption  technologies.  

Contact Information 

If you have any questions related to this document, or find any errors, please contact us at:  

LINE  Security Team ( dl_secwhitepaper @linecorp.com)  

Revision History 

Ver. Date Changes made 

1.0  201 6-09-29 Initial Publication  

 
  



 

Table of Contents 
 

1. Introduction _________________________________ 5 

2. Registration _________________________________ 6 

2.1 Account Creation  ________________________________ ______  6 

2.2 Email Address and Password Registration  ___________________  6 

3. Client-to-Server Transport Encryption _____________ 7 

3.1 Protocol Overview  ________________________________ _____  7 

3.1.1 Static Keys __________________________________________________________________ 7 

3.1.2 Handshake Protocol _________________________________________________________ 8 

3.2 Application Data Encryption  _____________________________  9 

3.3 Encryption Scope  ________________________________ _____  10  

4. Message End-to-End Encryption __________________ 11 

4.1 Letter Sealing Overview  ________________________________  11  

4.2 1:1 Message Encryption  ________________________________  11  

4.2.1 Key Generation and Registration ______________________________________________ 11 

4.2.2 Client-to-Client Key Exchange _______________________________________________ 12 

4.2.3 Message Encryption _________________________________________________________ 12 

4.3 1:N (group) Message Encryption  _________________________  13  

4.4 Encryption Scope  ________________________________ _____  14  

5. VoIP End-to-End Encryption _____________________ 15 

6. Conclusion __________________________________ 16 

7. References __________________________________ 17 



  

 
5 / 17 
 

This whitepaper provides technical details about the communication protocols and 

encryption algorithms integrated into LINEÕs messaging and VoIP platform. Th is document 

focuses on  LINEÕs Android and iOS mobile clients. L INE clients on other platforms might 

feature a slightly different implementation.  

The protocols described in this document are integrated in LINE 6.7 and later.  

We describe account registration, server - to -client encryption, and end - to -end encryption for 

messaging and VoIP.  

 

1. Introduction   



  

 
6 / 17 
 

 

2.1  Account Creation 
In order to create a LINE account , users must have a valid phone number, or a Facebook 

account. An email address and password can optionally be added to the LINE account after 

registration.  

Users start th e account creation  process  by sending their phone number to LINEÕs 

registration server.  The server generates a random 4 -digit PIN code and sends it to the 

specified number via SMS (IVR is also supported). Users verify ownership of the phone 

number by ente ring the 4 -digit code into the LINE client application , which passes it on to 

the registration server.  The server verifies the sent code and completes the registration if it 

matches the originally  sent value.  Upon successful registration , the c lient receiv es a unique 

user ID  and an auth entication key . The key  is us ed to  generat e authentication tokens for all 

subsequent request s. 

2.2  Email Address and Password Registration 

Users can optionally add an email  address and password to their LINE account.  The e mail 

address and password are used for account migration, login from desktop LINE  clients , as 

well as for access to LINEÕs Web -based services.  

When a user registers an email  address and password, LINE sends a randomly generated 4 -  

digit verification code t o the specified address. Users verify ownership of the email  address 

by entering the verification PIN code into the LINE application, or by clicking the verification 

link included in the verification email  on their mobile device. If verification is success ful, 

LINE authentication by email  address and password is enabled for the userÕs account.  

2. Registration 



  

 
7 / 17 
 

 

3.1  Protocol Overview 
The main tr ansport protocol used in LINE mobile clients is based on SPDY 2.0 [1] . While the 

SPDY protocol typically relies on TLS to establish an encrypted channel, LINEÕs 

implementation uses a lightweight handshake protocol to establish the transport  keys used 

for application data encryption.  

Our handshake protocol is loosely base d on the 0-RTT handshake  in TLS v1.3  [2] . LINEÕs 

transport encryption protocol uses elliptic curve cryptography (ECC) with the secp256k1 

curve [3]  to implement key exchange and server ide ntity verification. We use AES for 

symmetric encryption and derive s ymmetric keys using HKDF [4] . 

We describe the protocol in more detail below.  

3.1.1  Static Keys 

In order to guarantee that clients only connect to legitimate LINE se rvers, we use static ECC 

key pairs. LINE servers securely store the private part  of each pair, while the corresponding 

public k eys are embedded in LINE client applications . 

We use two types of static keys:  

l ECDH key pair for key exchange: (!"#"$c!"#$%&'!stati! !"#$%&!  

l ECDSA key pair for server identity verification:  ! sign!"#$%&'!sign!"#$%&)  

Because clients are pre - initialized with t he static ECDH key described above , clients  can 

include encrypted application data  in  the first flight (0 -RTT data ) . 

 

3. Client-to-Server Transport 
Encryption 



September 29, 2016 Version 1.0 

 

 
8 / 17 
 

3.1.2  Handshake Protocol 

The client and server exchange the following messages in order to establish the transport 

key used to protect application data . 

 Client Hello  I.

1. Generate an initial ephemeral ECDH key and a 16 -byte client nonce . 

c_init!"#$%&, ! ! !"!#!"#$%&' ! !"# H!"#"$%&" ! !  

! !"!#$ ! !"#$%&!"#$%"(!  

2. Derive a temporary transport key  and initialization vector (IV) using the serverÕs static 

key and the initial ephemeral key generated in 1. The key and IV are both 16 byt es long.  

len!"# ! 16 

le! !" ! !"  

!"#$%&!"#$ ! !"#$ ! ! init!"#$%&'!static!"#$%& ! 

!" !"#$ ! !"#$ !" ! ! !"#$%&!!! !"!#$ , !"#$%&!"#$!  

keyi! !"#$ ! !"# F!"# ! S!"#$ , ! legy temp key! , len!"# ! !"n!"  

!"# !"#$ !  !"#$! !"#$ !! ! !" ] 
!" !"#$ = !!"#$! !"#$ !!" : 31] 

3. Generate an ephemeral ECDH client handshake key . 

! !"#$%&! ! !"#$%&' ! !"# ! !"#"$%&" () 

4. Encrypt ! !"#$%& and app lication  data with  !"# !"#$  and !! !"#$ . (See 3.2  for details about the 

encryptio n method.) . 

!"#" !"# ! !"# ! !" ! !"#$ ! !v!"#$ , ! !"#$%&||!"" !!"#" !  

5. Send  the following data to the server :  

!!"#"$%!"# !!"#$%&' ! ! !"#$%&, ! !"!#$ ! !"#" !"# !!

 

 Server Hello  II.

1. Calculate the  temporary transport key  !"# !"#$ and IV !" !"#$  using the serverÕs static 

ECDH key and the clientÕs initial ephemeral key.  

!"#$%&!"#$ ! !"#$ !"#"$%!"#$%&', ! ! !"!#!"#$%& ! 

!" !"#$ ! !"#$ !" ! ! !"#$%&!|c!"!#$ !shared!"#$ !  

!"#$v!"#$ ! !"# ! !"# ! ! !"#$ ! ! !"#$%&"'(%)"$! ! !" ! !"# ! !"n!"  

!"# !"#$ ! !!"#$! !"#$ !! ! !" ! 

!" !"#$ ! !!"#$! !"#$ !!" ! !" ! 

2. Decrypt received app lication  data with !"# !"#$  and extract  ! !"#$%&. 

3. Genera te an ephemeral key pair and a 16 -by te server nonce . 

! !"#$%&'! ! !"#$%& ! !"#$ !"#"$%&" ! !  

! !"!#$ ! !"#$%! !"#$%" ! !  

4. Derive the forward -secure  (FS)  transport  key and IV . 



September 29, 2016 Version 1.0 

 

 
9 / 17 
 

!"# !"# = 16 

!" ! !" ! !"  

shared!" ! !"#$ ! !"#$%&'!c!"#$%&  

M! !" ! !" ! F!"! ! !"!#$ !!! !"!#$ ! !"#$%&!" !  
!"#$%!" ! !"#$ !"# ! ! ! !" ! ! !"#$%&'%("$! ! !" ! !"# ! !" ! !" !  

!"# !" ! !!"#$! !" !! ! !" ! 
!" !" = !!"#$! !" !16! !" ! 

5. Generate and  sign the handshake state  using the serverÕs static signing key.  

!"#"$ ! !"#$%& ! ! !"#$%&!!! !"!#$ !!! !"#$%&!!s!"!#$ !  

state!"#$ ! !"#$ ! !"#$! !"#"$! !"#n!"#$%&'!  

6. Encrypt app lication data with !"# !" and  !" !". 

!"#" !"# ! !"# ! !" ! !" ! !" !" ! !"" !!"#" !  

7. Send  the following data to client :  

!! !"#$%&, ! !"!#$ ! !"#"! !"#$ ! !"# a!"# ! 
 

 Clien t Finish  III.

1. Verify the handshake signature. If the signature verifies, proceed to the next step.  If not, 

abort the connection.  

!"#$%! !"#$% !"#$%&! !"#"! !"#$ !sig! !"#$%&!  

2. Derive !"# !"  and  !" !" . 

!"#$%&!" ! !"#$ ! !"#$%&'! ! !"#$%&  

! S!" ! !"# ! !" ! ! !"!#$ !!! !"!#$!shared!"!  
keyiv!" = HKDF!"# ! ! ! !" ! ! !"#$%&'%("$! ! !" ! !"# ! !" ! !" !  

!"# !" ! !!"#$! !" !! ! !" ! 
!" !" ! !!"#$! !" !!" ! !" ! 

3. Encrypt all subsequent application data using !"# !"  and !" !" . 

After the handshake i s complete , both client and server share a forward -secure symmetric 

key  !"# !"  and can create a secure channel  for application data. Application data encryption 

is described in the next section.  

3.2  Application Data Encryption 
Application data is encrypted with  the 128 -bit key !"# !"  using the  AES-GCM [5]  AEAD cipher.  

Both client and server generate a unique nonce for each encryption operation. The nonce is 

calculated by combining a client/server marker, a 64 -bit sequence nu mber !"# !"# , and the 

!" !"  obtained in the handshake process.  

!"!#$ ! = (marker!!!!"# !"#$ ! !! !!" !"  

The s equence number is reset to zero each time the encryption key changes . 



September 29, 2016 Version 1.0 

 

 
10 / 17 
 

Application data is encrypted using the following algorithm :  

! !"! !"# ! !"#$%& ! !" ! !"! !"!#$ ! !"" !!"#" !!  

3.3  Encryption Scope 
Currently, only SPDY data frames are en crypted. Control frames in LINEÕs transport protocol 

do not carry any  confidential information;  they only include  endpoint identifiers and 

message metadata . 



  

 
11 / 17 
 

 

4.1  Letter Sealing Overview 
Letter Sealing is the common name of  all  end - to -end encrypt ed (E2EE) protocol s integrated 

in LINEÕs messaging and VoIP service . In this chapter, we focus on Letter Sealing as applied 

to messaging. We discuss Letter Sealing for VoIP in Chapter 5. 

LINE m essages are  loca lly  encrypted on each client device  before being sent to LINEÕs 

messaging  server , and can only be decrypted by their intended recipient . Letter Sealing is  

applied  only to message payload s, and  message metadata (sender  ID , recipient  ID , and so 

on) is not encrypted.  

The main cryptographic algorithms used in Letter Sealing for messaging are listed in the 

following table.  

Key exchange algorithm  ECDH over Curve25519  [6] 

Message encryption algorithm  AES-256 in CBC mode  

Message hash function  SHA-256 

4.2  1:1 Message Encryption 
The following section describes Letter SealingÕs 1:1 message exchange protocol.  

4.2.1  Key Generation and Registration 

In order to be able to send encrypted messages, each LINE client application  generates a 

Letter Sealing ECDH key p air, and saves it securely in the applicationÕs private storage area. 

The key pair i s generated when the user first  launches the LINE applications or when they 

turn Letter Sealing back on after disabling it (Letter Sealing is enabled by default for current  

mobile clients).  

4. Message End-to-End 
Encryption 



September 29, 2016 Version 1.0 

 

 
12 / 17 
 

After generating the device key pair, each  LINE client registers its  public key with LINEÕs 

messaging server. The server associates the key with the currently authenticated user and 

sends back a unique key ID to the client. Each key  ID is  bound to a specific user  and 

represents the current  version of that userÕs public key.  

A new key is generated and registered each time the LINE application is reinstalled or  when  

the user migrates their account to a new device.  

4.2.2  Client-to-Client Key Exchange 

In order to be able to exchange encrypted messages, clients must share a common 

cryptographic secret. When a LINE client wishes to send a message, it first retrieves the 

current public key of the recipient. Next, the client passes its own private key a nd the 

recipientÕs public key to  the ECDH algorithm in order to generate a shared secret. The 

recipient generates the same shared secret using their own private key and the senderÕs 

public key, as shown below.  

!"#$%&!!"#$"% 

! ECDH!"#$%&''()  !" y!"#$%&'
!"#$% !ke! !"#$%&

!"#$%  

= !"#$ !"#$%&''()!ke! !"#$%&'
!"#$% , !" ! !"#$%&

!"#$% !  

The above process is transparent to  user s. Users who want to make sure they are 

communicating with the expected recipient can display the reci pientÕs public key fingerpr int  

and verify it out -of -band.  

4.2.3  Message Encryption 

LINE encrypts each message with a unique encryption key and IV. The encryption key and 

IV are derived from the shared secret calculated in 4.2.2 , and a randomly generated 8 -byte  

"#$% as follows:  

!"# !"#$%&' = !"#$%& !Shared!!"#$"%!!!!"#$!!!!!"#$! !!  

!" !"# = !"#$%& ! !"#$%&!!"#$"%!!!!"#$!!!!!"#! !!  

IV!"#$%&' ! !V!"# ! ! !" !! !!! !"# !!" ! !" ! 

The generated key and  IV are used to encrypt the message paylo ad &  using 256 -bit AES in 

CBC block mode . 

! ! !"#$%$ ! !" ! !"#$%&' ! !! !"#$%&' ! ! !  

Next, LINE calculates a message authentication code ( MAC) of the ciphertext ! , as follows:  

!"# !"#$% ! !"#$%& !  

!"# !"# ! !"#"$% (!" ! !"#$%&' ! !" ! !"#$% ! ! !" !! !MAC!"#$%!!" ! !" !!  

Finally, the following data is included in the message sent to the recipient:  



September 29, 2016 Version 1.0 

 

 
13 / 17 
 

' ()"*+, ! -+,%(,%!%./( ! "#$%! 0! &10 ! "(,2()!3(.!45 ! )(-*/*(,% !3(.!45 !

The '()"*+,  and -+,%(,%!%./( fields serve to identity  the Letter Seali ng version used to create 

the message. Recipients use the "(,2() !3(.!45  to retrieve the public key used to encrypt the 

message . The )(-*/*(,%!3(.!45  value helps  verify  that  the message can be decrypted using the 

current local pr ivate key . Messages that target a previous key  pair  (such as  one used before 

migrating to the current device) cannot be decrypted. To facilitate device migration, LINE 

clients automatically request recent messages targeting a previous key pair to be resent.  

Once the recipient determines that they  can decrypt a message, they  derive  the shared 

secret, symmetric encryption key, and IV as described above. Next, LINE calculates the MAC 

of the received ciphertext , and compares it with the MAC va lue included in the message. If 

they match, the contents of the message is decrypted and displayed. Otherwise, the 

message is discarded.  

4.3  1:N (group) Message Encryption 
In order to implement 1:N encrypted chats, LINE generates a shared group key  

!"#$%&'%! !"#$% , which is then securely distributed to all group members. The group key is 

typically generated by the first member that wants to send a message to the group.  

To associate a group key with a group, LINE first generates a new ECDH key  pair . The  

privat e part serves as the group Õs shared key . LINE then retrieves the public keys of all 

current group members, and calculates a set of symmetric encryption keys using the current 

userÕs private key and each group memberÕs public key. The key derivation process  is the 

same for 1:1 chats, as described in 4.2.1  and 4.2.2 . Next , the  group  shared key is 

encrypted individual ly  with each of the generated symmetric keys, and the encrypted data is 

sent to the mes saging server. The server associates the encrypted group keys with the 

group  and returns the current shared key ID.  

When members join or leave the group, a new group shared key is generated and 

associated with the group.  

When group member s want  to send a message to the group, they first retrieve the 

encrypted !"#$%&'%! !"#$% , decrypt it, and cache it locally. To send a message, each member  

derive s an encryption key and IV, using the group Õs shared key and their own public key as 

input. The process is si milar to the one used for 1:1 chats, and is presented below.  

Shared!!"#$"%!"#$% ! !"#$ !"#$%&''() !"#$%&'%y!"#$%! !" y!"#$%&
!"#$"%  

!"# !"#$%&' ! !"#$%& ! !"#$%&!!"#$"%!"#$% !!!!"#$!!!!!"#$! !!  

IV!"# ! !"#$%& ! !"#$%&!Secret! !"#$ !|!!"#$ |!!!"#! !!  

!" !"#$%&' ! !! !"# ! ! !" !! !!! !"# !!" ! !" ! 



September 29, 2016 Version 1.0 

 

 
14 / 17 
 

Message data is encrypted and formatted as described in 4.2.3 , with the only difference that 

the )(-*/*(,%!3(.!45  field is replaced wit h the key ID of the groupÕs shared key.  

4.4  Encryption Scope 
Letter Sealing is currently applied to text message s and location  messages . 



  

 
15 / 17 
 

In addition to message encryption, LINE also supports end - to -end encryption for free VoIP 

calls. Keys for VoIP traffic en cryption are established using the ECDH key exchange 

algorithm. The curve used in LINEÕs VoIP encryption protocol is secp256r1 [3] . 

 

To start a call, the caller generates a new ephemeral key pair and sends it to the callee as 

part of th e call request. After the callee  receives the call request, they  generate their own 

ephemeral key pair and send  it back to  the caller. User identity is guaranteed by the 

signaling server which signs call setup messages  with a static key whose publ ic part is 

embedded in  LINE clients.  

After both parties  exchange keys, they  generate a master secret, and derive a VoIP session 

key and salt as follows:  

!"#$"%!"#$%& 

! !"#$ !"#$%&'() !"#$%$&'( !!" ! !"#$%&'
!"##$% !!"#$%$&'( !!" ! !"#$%&

!"##$$  

! !"#$ !"#$%&'() !"#$%$&'( !!" ! !"#$%&
!"##$%!!"#$%$&'( !ke! !"#$%&'

!"##$$  

 

Key!"#$ ! !"# ! !"#$%& !"#$" ! !"#$%&! !"# !"## ! ! !"  

!"#$!"#$ ! !"# ! !"#$%& !"#$" ! !"#$%&! !"# !"## !" !29  

Here  !"# !"## is a uni que call ID , randomly generated at call initiation. !"# !"#$  and !"#$!"#$  

serve a s the master key and master salt  used to initialize SRTP [7] , respectively . Bot h audio 

and video media stream s are encrypted using the  AES_CM_128_HMAC_SHA1_80 crypto -suite 

[8] . 

5. VoIP End-to-End Encryption 



  

 
16 / 17 
 

 

Messaging  t raffic between LINE clients and our servers is protected with forward -secure 

encryption, and both text messages and media streams in VoIP calls are end - to -end 

encrypted. Our end - to -end encryption protocols ensure that neither third parties, nor LINE 

Corp oration can decrypt private calls and messages  between users ;  encrypted 

communication can only be decrypted  by the intended recipi ent. 

6. Conclusion 



  

 
17 / 17 
 

 

[1]  M. Belshe, R . Peon, et al., "SPDY Protocol -  Draft 2 ",!

https://www.chromium.org/spdy/spdy -protocol/spdy -protocol -draft2  

[2]  E. Rescorla , "Transport Layer Security (TLS) Protocol Version 1.3 ",!

https://tools.ietf.org/html/draft - ietf - tls - tls13 -16 

[3]  Standards for Efficient Cryptography Group, "SEC 2: Recommended Elliptic Curve Domain 

Parameters ", January 2010. Version 2.0, !

http://www.secg.org/sec2 -v2.pdf  

[4]  H. Krawczyk  and P. Eronen, "HMAC -based Extract -and -Expand Key Derivation Funct ion 

(HKDF)", RFC 5869, May 2010, !

http://w ww.rfc -editor.org/info/rfc5869  

[5]  D. McGrew and J. Viega., "The Galois/Counter Mode of Operation (GCM) ". Manuscript, May 

2005, Available from the NIST website.  

[6]  D. J. Bernstein, "Curve25519: ne w Diffie -Hellman speed records ", Proceedings of PKC 2006, 

February  2006  

[7]  M. Baugher , D. McGrew , M. Naslund , E. Carrara , K. Norrman , "The Secure Real - time 

Transport Protocol (SRTP)", RFC 3711, March 2004, !

http://www.rfc -editor.org/info/rfc3711  

[8]  F. Andreasen , M. Baugher , D. Wing , "Session Description Protocol (SDP) Security 

Descriptions for Media Streams  ", RFC4568, July 2006 ,!

https://www.rfc -editor.org/info/rfc4568  

7. References 


